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Triangle based discretization techniques offer great advantages
refative to standard finite difference methads for the modeling of flow
through geometrically complex geolegical features. The purpose of this
paper is to develop and apply a tiangie based method for the modeling
of two phase flow through porous formations. The formulation includes
the effects of gravity, compressibility, and capiflary pressure. The
technique entails a triangle based mixed finite element method for
solution of the variable coefficient, parabolic pressure equation, and
a second-order TVD-type (total variation diminishing) finite volume
scheme for solution of the essentially hyperbolic saturation equation.
The method is applind to a variety of example problems and is shown
1o perform very well on problems involving geometric complexity
coupled with heterogencous, generally anisotropic  permeability
descriptions. ¢ 1993 Academic Press, ine,

L. INTRODUCTION

Geometrically complex geological structures, such as
{aults, cross stratified beddings and large scale inclined
strata, can have profound effects on the flow of finids
through subsurface formations. Standard finite difference
mcthodology, typically used for oil reservoir simulation,
lacks the geometric flexibility required for modeling flow
through or around such structures. Triangle based dis-
cretization methods, by contrast, offer an attractive means
to discretize and simulate flow through complex strata. The
development, implementation, and application of such a
scheme is the subject of this paper.

The equations governing immiscible displacement in
porous media can be expressed in terms of two coupled
cquations, the pressure equation and the saturation cqua-
tion. The pressure equation, which describes the pressure
ficld theoughout the formation, is in general a variable cocf-
ficient parabolic pactial differentisf equation. The saturation
cquation, whicl describes the salurations (volume frac-
tions) of MTuds throughout the reservoir, is an cssentially
hyperbolic conservation law (capillary pressure effects
introduce small dispersion-like terms). The accurate
numerical solution of these two cquations is complicated by
several factors. Permeability, which enters the formulation
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through the coclficients in the pressure equation, is a [ull
tensor quantity that is ofien extremely variable over very
short distances. This results in the appearance of highly dis-
continuous cocflicients in the discretized pressure equation,
Additional difficulties can arise because the velocity field,
required for solution of the saturation equation, is deter-
mined from Darcy’s law via differentiation of the pressure
field and multiplication by the discontinuous permeability
coeflicients. Many numerical approaches, such as standard
Galerkin hinite clement procedures, arc not very well suited
for such caleulations and can yield inaccurale velocity ficlds
that arc not contlinuous across clement edges. Finally,
because the saturation equation is essentially hyperbolic in
character, numerical dispersion can act lo seriously degrade
numerical solutions if inaccurate selution techniques are
used.

The purposc of this paper is to present an accurate
triangle based method for the modeling of two phase flow
through porous media. The effects of gravity, capillary
pressure and compressibility are included. The formulation
is for two dimensional systems but the general approach can
be applied in three dimensions as well. The method is
formulated to handle generally anisotropic, highly discon-
tinuous permeability fields, yicld accurate velocity ficlds and
minimize numerical dispersion. The pressure equation is
solved via a mixed finite element method such as that used
in {1, 2]. Mixed methods arc particularly well suited to
problems with highly discontinuous coefficients and to
those where the secondary or flux variable (integrals of
velocity through efement edges) is required to a degree of
accuracy comparable to that of the primary variable
(pressure). This is accomplished by approximating the two
ficlds individually, as witl be secit in Section 2.

The saturation equation is solved with a second-order
triangle based TVD-type finite volume scheme. TVD (total
variation diminishing} schemes are a class of second-order
accurate methods that eliminate spurious oscillations in the
numerical solutions of hyperbolic conservation [aws. The
basic finite volume meihod applicd in this study was
originally presented in [37 and further refined in [4]. The
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scheme minimizes numerical dispersion relative to a first-
order method and is particularly well suited for coupling
with the velocity field computed via the mixed finite element
solution of the pressure equation. This is because the finite
volume scheme directly utilizes integrals of fluxes through
element edges, which are known very accurately from the
mixed finite element solution. More specifically, for the
lowest order mixed method applied in this study, these
fluxes are superconvergent and are therefore computed to
O(1*) accuracy, where / is a typical element side length.
The overall method therefore combines a continuous,
second-order approximation for the velocity field with
a second-order TVD-type scheme for solution of the
saturation equation.

Previous investigators have developed triangle based
methods to model immiscible displacements in porous
media. The method developed in the present study most
closely resembles the general formulations of [1, 2], which
utilized a mixed finite element method for solution of the
pressure equation and a discontinuous finite element
method for solution of the saturation equation. These
formulations were for incompressible systems, while the
formulation presented here is for compressible systems. The
discontinuous finite element method used in [ 1, 27 for solu-
tion of the saturation equation is a two-step procedure
which requires the calculation of three saturation values in
each triangular element. In addition, the slope limiting
procedure applied in [1, 2] requires the solution of local
optimization problems for each element. The finite volume
method applied in this study for solution of the saturation
equation is simpler and more efficient than the discon-
tinuous finite element method of [1, 27. This is because the
scheme requires only a single unknown in each element
(rather than three) and utilizes a siope [imiting procedure
that is quite straightforward to implement. Some recent
discontinuous finite element schemes [ 5, 6], which extend
the earlier approaches, are also potentially applicable to the
solution of the saturation equation,

Other methods applicable to the solution of two phase
flow through geometrically complex porous media include
the control volume finite element methods presented in, for
example, [7, 8]. These methods have the advantage that
they can be fairly readily introduced into current finite dif-
ference reservoir simulators. However, the control volume
finite element methods are based on a Galerkin finite ele-
ment approach for the pressure equation and a first-order
accurate upwinding of the saturation equation. Neither of
these treatments achieves the accuracy of the approaches
presented in this paper. The Galerkin finite element method
does not optimally weight the mobilities and does not yield
continuous velocities across element edges. This problem is
circumvented in the control volume finite element approach
by defining control volumes, which essentially comprise an
auxiliary grid. Velocities computed on this auxiliary grid are
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continuous, but their accuracy is not of the level attained by
mixed finite element methods.

Finally, the mixed finite element-modified method of
characteristics approaches developed for rectanguiar
elements by, among others, [9, 107, could be extended to
triangular elements. This approach may lose some accuracy
for trianguiar elements relative to rectangular elements
because fluxes, rather than the velocities required for the
solution of the saturation equation via a modified method of
characteristics, are computed accurately via a triangle based
mixed finite element method. This may lead to mass conser-
vation problems in the solution of the saturation equation.

This paper proceeds as follows. The governing equations
and numerical formulation for the modeling of two phase
flow through porous media are presented in Section 2. The
mixed finite element method for solution of the pressure
equation and the higher order finite volume method for
solution of the saturation equation are discussed in detail.
Examples demonstrating the applicability and strengths of
the method for the modeling of flow through complex
geological structures are presented in Section 3. Conclu-
sions and future directions are discussed in Section 4.

2. GOVERNING EQUATIONS AND
NUMERICAL FORMULATION

In this section we formulate the equations governing
slightly compressible, two phase immiscible displacements
in two dimensions. Gravity and capillary pressure effects are
included. Next, the mixed finite element method applied to
the solution of the pressure equation and the higher order
finite volume method for solution of the saturation equation
are presented in detail. Examples demonstrating the
individual performances of both the mixed finite element
method and the higher order finite volume method are
provided.

2.). Equations for Immiscible Displacement

The equations describing two phase immiscible displace-
ment in porous media can be derived by combining Darcy’s
law, written for each phase individually, with conservation
of mass for each phase. These equations can be readily
manipulated (see [ 11] for details) into a parabolic equation
describing the pressure field throughout the reservoir (the
pressure equation) and an essentially hyperbolic equation
describing the propagation of fluid fronts through the
reservoir (the saturation equation):

1
V.[{m,+m,) Vp]+ 5V -[m, —m,)-Vp.]
ép
7gv' [(ml)pr)+mwpu')'VD]+Ql:¢Cl E’ (la)
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where the subscript w refers to the water phase and o to the
oil phase. In the above, m,, is the mobility of the water,
defined as

k..
=k
#M’

m {tc)

W

where k is the position-dependent absolute permeability
tensor, k,,, is the water relative permeability, and p,, is the
water viscosity; m,, the mobility of the oil, is defined
analogously. In Eq. {1a), the pressure equation, p is the
average pressure of the water and oil phases, defined as
p={(p,+ p.Y2, p. is capillary pressure, defined as
Pe=pP,— P.. p 18 density, g is the acceleration due to
gravity, D is depth, @, is the total volumetric injection rate,
(.. is the water injection rate, ¢ is porosity, ¢, is the total
compressibility of the rock—fluid system, and ¢ is time. In
Eq. (1b), the saturation equation,

dp.
as,’

w

hw: _mofw (ld)

where £ is the fractional flow of water defined as

kr“‘/# '

.f“r B krlt'/ﬂ“' + k?’o/#()’

(le)

§,. is the saturation, or volume fraction, of water, v, is the
total velocity of the system, defined as v,=v, +v,, and

Gw=fw(pw_pu)gma' (lf)

The equations above describe the two-phase flow of slightly
compressible fluids through porous media. The only term
accounting for the effects of compressibility is the time
derivative in the pressure equation. The formulation is
applicable to slightiy compressible fluids because, in the
derivation, terms of the form c,m-Vp-Vp are neglected
compared to terms of the form V -m - Vp. This approxima-
tion is justified when ¢,(dp) <1, where 4p is the charac-
teristic pressure drop through the system. For reservoir flow
problems, 4p is typically O(1000 psi) and ¢,, for reservoir
liquids (oil and water), is about 10~ °psi—'. Thus,
¢,(Ap)~ 10773, and the requirement of slight compressibility
is satisfied. For problems involving highly compressible
fluids, this requirement may not be satisfied and the
formulation adopted here may not be applicable. Also
neglected in Eq. (1a) is the time derivative of the capillary
pressure term, which is small compared to the time
derivative of the average pressure,

Equations (1) can be nondimensionalized by identifying
characteristic values for each variable. The resulting dimen-
sionless equations are of identical form to those above.
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Two important dimensionless groups appear. The first,
designated G, quantifies the ratio of gravitational effects to
convective effects. It can be written as

k. dpg
a MOU(' ’

Gy (1g)

where k. is the characteristic permeability (e.g., the
geometric average of the element permeabilities), v, is the
characteristic total velocity, 4p=p, —p,. and the other
variables are as defined previously. The second dimen-
sionless group represents the ratio of convective terms to
capillary pressure terms and can be thought of as a type of
Peclet number. Designating this group Pe:

_ Beu L

P
CT k.

) (1h)

where L is the characteristic length of the system and p, is
the characteristic capillary pressure.

In the formuiation discussed below, Egs. (1) will be
considered in the general forms presented above. At this
point, however, we shall consider simplified versions of
these equations which will enable us to better characterize
the system. In general, the capillary pressure terms in the
pressure equation are small compared to the average
pressure terms. If we further neglect gravitational effects and
the source term, Eq. (12) simplifies to

V-[m, +m,)-Vpl=ge, L (2a)

Capillary pressure effects are also typically small relative to
the convective terms in Eq. (1b). Neglecting these terms, in
addition to the source and gravity terms, gives

as..
V(=4 (2b)

At this point the nature of the governing equations is
apparent. Equation (2a) is a parabolic equation with posi-
tion and saturation dependent coefficients. The saturation
dependency of m, and m, renders them time dependent;
their dependency on position (x) results from the variation
of both k and S, in space. Due to the large magnitudes of
variation in k with position, these coeflicients are very dis-
continuous in X. Equation (2b) is a noniinear hyperbolic
equation. The nonlinearity arises through the nonlincarity
in f,., which is typically a nonconvex function and is
derived, in practice, from laboratory measurements. The
additional terms in Egs. (1} do not change the general
nature of the equations but do complicate the formulation,
as will be seen below.
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The general solution procedure is as follows. An IMPES
(implicit in pressure, explicit in saturation) type approach
will be used to solve Eqgs. (1). At the start of a time step, the
pressure equation is solved implicitly via a backward Euler
method and the pressure solution is advanced from time
step » to time step 7+ 1, The saturation field is held con-
stant over this time step. As a result, the pressure solution at
any time is linear; no Newton iterations are required.
Following solution of the pressure equation, the total
velocity v, is known (this point is discussed in detail below),
and the saturation equation can then be solved explicitly,
with pressure and velocity (evaluated at time # 4+ 1) held
constant over the time step. Due to the sequential treatment
of the pressure and saturation equations, and the first-order
accurate time discretization of the pressure equation, the
global scheme is not formally second-order accurate in time.
It can, however, be readily modified to achieve global
second-order time accuracy, as discussed in Section 2.3,
though this does not appear to be necessary in practice. We
now consider the solution of the pressure equation.

2.2. Mixed Finite Flement Sotution of the Pressure Equation

As discussed in Section 1, mixed finite element methods
are ideally suited to the solution of elliptic or parabolic
equations with highly discontinuous coefficients, par-
ticularly when the flux or velocity field is also of interest,
This is precisely the case in Eq.(la) as the coefficients,
through their dependency on k, are highly discontinuous,
and the coupling of Eqs. (1a) and (1b) is through v,. There-
fore, a triangle based mixed finite element method will be
applied to the solution of Eq. {1a).

In applying mixed finite element methods to the pressure
cquation, Eq. (1a) is not used directly, Rather, it is split into
the two equations from which it is derived; conservation of
mass and Darcy’s law, as follows:

ap
Vv, +0,= g, = 3a
v.’ Q.‘ cn’ 8,5 ( )

¥, =— (mw + mo) : Vp - %(mu - mw) Vp(

+g(m,p,+m p.)-VD. (3b)
In the mixed finite element method, p and v, are
approximated separately. The approximation spaces for
these variables are discussed in many references; see, e.g.,
[1]. The lowest order basis functions for p and v,, consis-
tent with the requirements of the approximation spaces, are
as follows: pressure is approximated via a basis function,
designated ¥/, which is piecewise constant throughout the
solution domain. The total velocity is approximated via a
vector basis function ®' whose normal component is
continuous across the interfaces of adjacent elements. We
designate the total number of elements in the domain M and
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the total number of element edges N. Then, the total velocity
and pressure fields can be represented in terms of degrees of
freedom ¢, and f, and basis functions @' and ¥’ as

N

v, =Y o, @ (4a)
=1
M )

p=2 B¥, (4b)
j=1

where ¥/ =1 over element ;j and zero elsewhere and
d)’-n_,: 8, (1 on edge i and zero elsewhere). The @' basis
function is nonzero only over the two elements that share
edge i

The variational form of the pressure equation can now be
expressed by weighting Eq. (3a} with the ¥* basis functions
and Eq. (3b) with ®*, giving

[ Vovywrdat| o, was

ép
- L, de, 5, P da, (5a)
[ (m; 'y, + Vp) @ a4
2
1
= [, (~3 U119,
o
+pufut putu) £ VD)@ dA,  (5D)

where m, is the total mobility (m,=m_,+m,) and f,, is the
fractional flow of oil (f,=1-/,) Introducing the
approximations for p and v, into Eqs, (5a) and (5b) and

applying the divergence theorem yields, after some
additional manipulation,
: ap. .
.x,.j (V.®) ¥ d4 +ﬂj e, WPk dA
2 di g
—{ o.w*aa, (62)
£

a,.fﬂ (m; ' @) ®* 44 aﬁjfﬂ (V- ®%) P’ dA
[t @a—3] (110

dp
Pelgs @k dd
x(dsw) S

+| ufotput)EVD-®Fdd,  (60)
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where the appearance of a repeated index indicates summa-
tion. Note that p, in the integral over @Q represents
prescribed pressure boundary data. All terms on the right-
hand sides of the above equations are considered known
(i, functions of S, only) when the pressure equation is
solved: The approximation of the term involving dp,/dS,, in
Eq. (6b} will be discussed below in Section 2.3. To write
Eq. (6a) in its final form, an approximation for df,/dt is
required. We shall approximate this term via a simple
implicit Euler scheme; i.e.,

dﬁjﬁ_L n+1_ pgn
__—-AI(IBJ : Bj):

7 (6¢)

where the superscript indicates the time level and Ar the
time step. Introducing this approximation into Eq. (6a)
yields

ﬁf.’li-l
a,.j (V@) P ds = ge Wt dA
2 41 Jg

"

=§LI ¢c,‘.f'”’9”"’dA+'[ 0, ¥ dA,
12 2

i (7)

where all terms on the RHS of Eq. (7) are known.
Equations (6b) and (7) represent a set of linear equations

to be solved for the unknowns «; and f,. Upon evaluation

of the integrals in Eqgs. (6b} and (7) the following equation

set results:
(e o)G)-(5)

In the above, A is a square matrix of dimension N, B is a
nonsquare matrix of dimension N x M, C, which is equal to
—B', is M x NN and D is a square, diagonal matrix of dimen-
sion M. The A and B matrices are formed from the two
terms on the LHS of Eq. (6b) and the C and D matrices are
formed from the two terms on the LHS of Eq. (7). The b,
vector, of dimension &, contains terms from the RHS of
Eq. (6b), while b, of dimension M, contains terms {from the
RHS of Eq. (7). Each of the matrices in Eq. (8) is extremely
sparse. The A matrix involves terms of the form &7 - @, The
@' basis function is nonzero only over the two elements con-
taining edge /. Therefore, at most five nonzero entries can
occur on a row in A, regardless of how irregular the grid.
The B and € matrices involve terms of the form (V - @) ¥,
Because ¥* is nonzero only in element &, the B matrix
contains at most two nonzero terms per row and the €
matrix at most three nonzero terms per row.

Note that pressure boundary conditions are enforced
through the integral over 8Q appearing in the b, vector.
Flux boundary conditions are specified through adjustment

{8)
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of the appropriate terms in the A and B matrices to recover
the desired «,. Well terms (point sources and sinks) are
not treated explicitly. Rather, a production index type
approach, where a pressure difference between the well bore
and the clement centroid is specified, is utilized. More
complex well models such as the sub-grid approach of
[, 2] could be used if the detailed modeling of near well
bore behavior is required.

The linear solution of Eq.(B) can be accomplished
through a variety of methods. Here, we rewrite the linear
system in the form

(A—BD 'Cle=b, —BD'b,. (9a)
This rearrangement is efficient computationally because
D ! is trivial to form (D is diagonal) and the matrix multi-
plications involve very sparse matrices. Also, duc to the
relationship between B and C, the structure of the matrix
A —BD ~'C is identical to that of A; i.e., no fill-in occurs.
Thus, the matrix problem reduces to the solution of an
order N system of linear equations, with at most five non-
zero contributions per row. Equation (9a) can be solved
using either direct or iterative (e.g., conjugate-gradient-like)
methods. A direct method is used in the examples presented
below. Once « is determined through solution of Eq. (9a),
f can be readily computed through a multiplication as
follows:
f=D""'(b,— Cu). (9b)
At this point the pressure equation is fully solved and the
pressure and velocity fields are known throughout the
domain. The formulation yields both of these quantities to
(1) accuracy, where [ is the typical spacing between node
points or, analogously, /~ (|4{)'?, where |4| is the area of
a typical clement. However, at certain points, supercon-
vergence is obtained. Specifically, at element centroids, p is
computed to O(/?} accuracy and, at edge midpoints (the
Gauss points), v, - r 15 likewise computed to O(/?) accuracy.
This latter result is significant and will be exploited below in
the solution of the saturation equation.

An alternate approach to the solution of the pressure
equation exists for systems where the effects of com-
pressibility, gravity and capillary pressure are negligible. In
such cases, a nonconforming finite element formulation can
be used for solution of the pressure equation; this method is
equivalent to the mixed method when applied to such
systems and yields identical results for centroid pressures
and edge fluxes. For more discussion of the nonconforming
finite element method and its equivalence with the mixed
method, see [12].

This completes the description of the solution of the
pressure equation. Before turning to the solution of the
saturation equation, we consider a simple example problem
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FIG. 1. Finite element mesh with low permeability streak.

which illustrates some of the strengths of the mixed f{inite
element method. The finite element grd for this example is
shown in Fig. . The problem to be solved involves single
phase, steady state flow with no gravity effects (i.c., soiution
of Eq. {2a) with m,=0 and m, =k). Pressure on the left
boundary is specified to be p=1 and pressure on the right
boundary is specified as p = 0. Zero flux is specified at y=0
and y=1. The permeability throughout the domain is
uniform and isotropic (k =1I) except in the low permeability
streak, designated in Fig. 1 by bold curves, where the
permeability is specified such that the component parallel to
the streak (&,} is equal to 0.1 and the component
perpendicular to the streak (k) is equal to 0.001. The
permeability within the streak (in the x— y coordinate
system) is therefore a full tensor quantity which varies with

1.0

%
>

FIG. 2. Streamlings for flow through region with low permeability
streak.
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Xx. Streamlines computed from the mixed finite element
solution of this problem are shown in Fig. 2. Clearly, as
expected, very little fluid penetrates the low permeability
region, due to the very low value of & | . This simple example
illustrates the ability of the triangle based mixed finite ele-
ment method to accurately resolve and model the effects of
irregular geometric structures with abrupt variations in
permeability. Other finite element methods are less adept at
handling irregular features with discontinuous properties.
Finite difference methods are also ill suited for problems of
this sort.

2.3. Finite Volume Solution of the Saturation Equation

The general method applied to the solution of the satura-
tion equation is formulated and described in detail in [3, 4]
for systems of the form of Eq. (2b). We shall concentrate
here on applying this method to the more general saturation
equation (1b) and in combining this approach with the
solution of the pressure equation described above. As dis-
cussed in Section 1, the scheme entails a finite volume
approach used in conjunction with a triangle based adap-
tive stencil to obtain a higher-order accurate approximation
for S,. As demonstrated in [3], the scheme is in general
weakly second-order accurate in the L, error norm for
solution of hyperbolic conservation laws.

In formuiating the finite volume scheme, it is useful to
rewrite Eq. (1b) as follows:

oS,
V-(hw-vsw)w-mgww%, (10a)

F'__fw[vr+ma(pw'—pa]g'VD]'

Here, the flux F contains both convective and gravitational
components. To apply the finite volume approach, we
integrate Eq. (10a) over a triangular element; i.¢.,

%IA¢SH.dA=uJA(V-F)dA

(10b)

+ L V.(h, VS,)d4+ L 0.d4. (11)

F

FIG. 3. Schematic of a portion of the triangular mesh.
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Applying the divergence theorem and defining the element
average saturation S, as

o
S"'sz S, dA, (12a)

where | 4] is the area of the element, gives, for 4 , 5 (defined
in Fig. 3),
as, 1 |:
LS (F—h, - VS, )n,d
¢ ot {4 4pel t4n -

+| (F-b, VS)ncd
/

AC

+ (F—hw-VSw)-nBCdl} (12b)

{nc

where we have, for now, neglected the source term.
We first consider the approximation of the convective
terms. The convective flux is designated J_; i.e.,

J(:J‘ Fongdi+| Fongdit| Fonged. (13a)

lag fac Ipe

From Eq. (10b), it is evident that the convective flux terms
contain contributions from the total velocity field and from
gravitational effects. In many cases, the v, terms constitute
the dominant contribution to the flux function F. These
terms enter the formulation via integrals over the element
edges; i.e., through integrals of the form

ffw(v, -n)dl. (13b)

In Section 2.2, it was indicated that the mixed finite element
solution of the pressure equation yields superconvergent
fluxes (i.e., O({?) accurate) at edge midpoints. Integrals of
the normal component of v, over element edges are likewise
O(I?) accurate. Thus, because the integrals in Eq. (13b)
involve v, in. precisely this form, the total velocity field is
incorporated into the finite volume solution of the satura-
tion equation in an optimal fashion. Alternate finite element
schemes for the solution of the saturation equation, which
use v, directly rather than v, -n integrated over an element
edge., do not optimally utilize the mixed finite element
solution of the pressure equation.

A semi-discrete approximation of the element average
saturation, where u = S, wili be used in the solution of the
saturation equation. If we designate the numerical flux
across an edge (ie., the numerical approximation to F -n)
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as A, then a first-order accurate approximation of the
convective flux can be expressed as

Jo=haa(tanc, Uapr) Lin

+hacltape, Wace) Lac

+hec(tage, Upep) Isc, (13c)
where 4 , 5 is the numerical flux across edge ABand /,,is the
length of edge ARB.

A higher-order accurate approximation for . is desirable
to minimize numerical dispersion. To generate such an
approximation, it is necessary to express the element
average data in terms of piecewise linear approximations for
u. Further, these piecewise linear approximations for u must
be formed in conjunction with slope limiters 10 avoid the
introduction of any spurious oscillations into the numerical
solution. The linear function approximating u in 4 . is
designated L ,. In any interior element, three candidates for
L, designated L', are formed; ie.,

Li=ax+by+c,. (14}
These linear approximations involve only adjacent ¢lements
and, in all cases, the element average of L, for 4 - is equal
to u - The first such candidate, LY, is the linear inter-
polant of the three values

(X805 Hapc)s (Xpeps Uaep) (Xaces Uace),
LZ is the interpolation of

(X.aacy Masc)h (Xacps Upcn ) (X 4grs Uape)
and L3 the interpolation of

{(Xamc) #anc) (Xaces Wace) (X 45es Uane)s

where we have assumed that no three of the triangle
centroids are colinear. These three linear interpolants are
depicted in Fig. 4.

F
FI1G. 4. Three candidates [or the linear interpolation of u over 4 5.



TRIANGLE BASED TECHNIQUE FOR POROUS MEDIA FLOW

To select a limited version of the three possible L7, we
compute the magnitude of the gradient of each L';:
IVL, | =(al+5])'"", (13)

for i=1, 2, 3. A valid slope limiter, particularly applicable
to problems involving nonlinear J., corresponds to the

selection of the L', for which |VL/| is the minimum. At
extrema, identified when

U pe>max{u cp, Upcn, Uapr]

or
U e <MW e, Ugen, Uane]s

a first-order approximation (L,=wu,p-) 1s used. This
scheme will not generally introduce any spurious oscilla-
tions into the numerical solution. However, the scheme as
described cannot be proven to obey a local maximum
principle. A slightly more complex version of the limiting
procedure, developed in [4], was proven to satisfy a local
maximum principle. This modified scheme requires that
additional tests on the L', be performed to assure that L/,
evaluated at the midpoints of the edges of 4,5 is not an
extrema relative to # in any of the elements that share a
common point with 4 ,5c. Rather than actually perform
this test, which can be somewhat involved for irregular
triangulations, we simply assure that L’ evaluated at the
edge midpoints, not introduce any new extrema globally.
This approach is simpler to implement and assures that the
scheme satisfies a global maximum principle. The limiter
described above is applicable to nonlinear flux functions.
A more compressive limiter, applicable to linear flux
functions, is described in detail in [3].

At this point we can form a second-order accurate expres-
sion for J,. For any edge, specifically edge 4B, we designate
X to be the midpoint of the edge and L ,(x’,,) to be the
limit of L ,(x) as x — x 5 from inside 4 , 5 and L (x%5) to
be the limit as x — x ,, from outside 4 , 5. With reference to
Fig 3, L {x' ;) corresponds to L, for 4 4z while L (x,)
corresponds to L, for A,,. Now, the second-order
accurate approximation for J, is

J. =hAB(LA(xi43), Lx%8)) L4n
+ e (LX) La(x%e) - Lie

b (L (%) Ly(x5)) - Ipe (16)
We use the EO numerical flux as described in [3] to
approximate /#{-,-). This basically entails computing
n-¢F/dS, at element edges and upwinding accordingly.
Additional complexity arises in the vicinity of sonic points
[13]; 1e., points at which n-3F/3S, =0. Such points ¢an
occur in simulations involving gravity effects when the two
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terms in Eq. (10b) are of opposite signs, as will be illustrated
below. At these points, an extra contribution to the numeri-
cal flux, of the form n - F(S*), where §* designates the sonic
point, is required. The second-order approximation for J.is
retained at sonic points.

When k, and therefore m,,, varies from one element to the
next, and when gravitational effects are present, it is evident
from Eq. (10b) that the convective flux function itsclf (F)
differs across element edges. It is important to emphasize
that we are here referring not to the particular value of the
flux function F(S,,), which is, of course, in general discon-
tinuous across element edges due to the discontinuity in S,,,
but to the flux function itself. The flux function is, in such
cases, inconsistent. When the flux function differs in adja-
cent elements, some of the theoretical convergence criteria
for the hyperbolic solution method are violated. In addition,
from a more practical point of a view, if the flux function is
inconsistent and if n - 3F/2S,, changes sign between the two
elements, the calculation of $* and therefore the sonic point
contribution to the numerical flux, are ambiguous because
the sonic point differs in the two adjacent elements.

From the discussion above, it is clear that even in the
absence of sonic points it is desirable that the flux function
itsell {F) not differ between adjacent elements. Further,
inspection of Egs. (10b) and (13a) reveals that the con-
tinuity of the scalar quantity n -k - VD across element edges
ensures that the numerical flux function does not change
across element edges; ie., continuity of n-k-VD yields a
consistent numerical flux function (recall that v, is con-
tinuous across element edges and that /, is a function of S,
only). Therefore, the flux function can be rendered consis-
tent as follows. In computing the numerical flux function at
a particular edge, the arithmetic average of the scalar quan-
tity n-k -V.D is computed from the properties of the two
adjacent elements and this average value i1s used in the
calculations. This corresponds physically to the assumption
that the permeability k does not change discontinuously
between adjacent elements but that a transition region
exists.

Use of this consistent numerical flux results in a robust
technique, even in the presence of large variations in the per-
meability field. Other approaches, such as computing
numerical fluxes for each element individually and then
averaging, resulted in numerical difficulties (e.g., violation
of a maximum principle) in the vicinity of sonic points
in some cases. This completes the description of the
second-order accurate approximation for J,.

The approximation of the diffusive flux, designated J,,
will now be considered. From Eq. (12b) we have

Jy= j,

+ (hw VSM] gLLY:Yed dl.

Iac

(b, -VS,) npdi+| (h,-VS,) n,cd

AR lac

(17)
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A variety of methods could be used to approximate the V5,
terms. The approach taken here makes use of the L, already
formed for the approximation of J,. The quantity
(h,,-VS,)-n4; can be evaluated at x ,, using L, for 4 5.,
designated L4%C; ie,,
rys=[h, 'VLjBCJxAB‘nABIABs (18a)
where the 7 superscript indicates that the quantity is
evaluated inside A 5. The analogous quaniity evaluated
outside A 45 (inside 4 ;) is
ros= e - VLI, 05l n. (18b)
Now, given r’,, and r%,, the integral over /., in Eq. (17)
can be estimated via the harmonic average of these two
scalar quantities:
T
[ Oh,VS,) n s Samlas
{

a8 *upt s 19
The other terms in Eq. {17) are approximated similarly. In
this way, the diffusive flux J, is formed. More accurate
approximations for VS, involving all three L', could be
formed if greater accuracy is required in the capillary
pressure terms. However, because this term is generally very
small compared to convective effects (ie, Pex 1), this
approximation should suffice for our purposes.

The term on the RHS of the mixed finite clement
representation of the pressure equation (Eq. (6b)} involving
(dp./dS,.) VS, is handled in a manner analogous to the dif-
fustve flux terms considered above. However, in evaluating
the integral in Eq. (6b), the divergence theorem is not
appiied. Rather, the area integral is evaluated directly. The
linear function L#5¢ is used to approximate VS, over the
element and also to evaluate dp,./dS, at the Gauss points. In
this way, capillary pressure effects are included in the mixed
finite element representation of the pressure equation,

The saturation equation for 4 (g can now be written in
the form

as, 1
0 - (v Quaa) @)
This equation is integrated in time via a second-order
accurate ENO (essentially nen-oscillatory) Runge—Kutta
procedure, as described in [14]. The scheme is subject to a
CFL restriction of about 0.3, where the length scale used is
an element side length. As indicated earlier, the global
method as described here is not formally second order
accurate in time. Though global second-order time accuracy
does not appear to be essential in practice (second-order
spatial accuracy is clearly more important), second-order
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time accuracy can be accomplished through some slight
modifications to the method. Specifically, the backward
Euler time integration of the pressure equation can be
replaced by a trapezoidal rule time integration. The second-
order accurate solution of the pressure equation requires an
estimate of the saturation at time » <+ 1, which is not yet
known at this stage of the solution procedure. S+ could,
however, be approximated by a preliminary integration of
the saturation equation using the velocity field at time ».
Second-order accurate time integration of the saturation
equation additionally reguires an estimate of the velocity
ficld at time » + 4, which is easily accomplished via linear
interpolation of the velocity fields at times » and # + 1, both
known at this stage.

In some reservoir simulation problems, if the well rates
and boundary conditions are held constant for some period
of time, the time scale for changes in the pressure and
velocity fields can be much greater than the time scale for
changes in saturation. For such cases, a multiple time-
stepping procedure can be used, where the velocity Geld is
updaied less frequently than the saturation field. This
approach can result in considerable computational savings,
as the solution of the pressure equation is typically much
more computationally intensive than is solution of the
saturation equation.

This completes our description of the numerical solution
of the saturation equation. Before discussing numerical
results for complex two phase reservoir flow problems, we
shall present some results for simple one-dimensional solu-
tions of the saturation equation. In the example problems,
no capillary pressure or source terms are included. In all
cases, v, =1 and the saturation at x =0 is fixed tobe §,, = 1.
The fractional flow function for the first example problem
corresponds to the curve labeled G, =0 in Fig. 5. This frac-
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FIG. 5. Fractional flow function for two values of G,,.
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F1G. 6. Solution profiles for one-dimensional displacement with
G,=0
tional flow results from specifying k,,, = S2, k,, = (1 - §,)%,
and p,/u, =5, with no gravity effect. Saturation profiles at
t=0.25and ¢t =0.5 are shown in Fig. 6. For this simulation,
80 triangnlar elements were used in the x-direction; periodic
boundary conditions in y were used to simulate a one-
dimensional displacement, In the figure, the solution front
and the rarefaction behind the front are clearly resolved.
The theoretical shock height for this problem is 0.41, which
is in good agreement with the numerical results. The next
case considered utilizes the fractional flow curve labeled
G,=2 in Fig. 5. In this case, the Tlux function includes
gravitational effects which act in the direction opposite to
that of v,; ie, in the negative x-direction, Note that this
fractional flow curve contains a sonic point at 5, =0.19.
Saturation profiles for this case at 1=0.23 and r=0.5 are
shown in Fig. 7. At no time during the displacement do
unphysical oscillations in the solution develop, even in the
vicinity of the sonic point. The solution profile clearly
progresses slower and displays a steeper front in this case
than in the previous case, as would be expected. The
theoretical shock height in this case is 0.76, again in good
agreement with the numerical results,
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0.6 1
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0.4 7]

0.2
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FIG. 7. Solution profiles for one-dimensional displacement with
Gy=12.
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3. NUMERICAL EXAMPLES

In this section we apply the methodology developed in
the preceding section to three example problems. Before
considering these examples, however, we shall discuss some
previous findings regarding the applicability and accuracy
of the mixed finite element and finite volume methods for
related problems. The applicability of triangle based mixed
finite element methods and the limitations of standard finite
difference approaches, for the modeling of flow through
complex reservoir beddings was discussed in detail in [15].
There it was demonstrated that, in many cases, standard
finite difference methods are unable to accurately model
both reservoir geometry and permeability anisotropy
simuitaneously. The error incurred through use of standard
finite difference approaches for the modeling of flow
through inclined, anisotropic beddings was quantified for a
variety of single phase flow problems and was shown to be
subtantial in many cases. Analogous error would also be
incurred in more complex cases, such as in the two phase
flow scenarios considered in this section.

The accuracy of the finite volume approach for solution
of hyperbolic conservation laws was demonstrated through
several examples in [37. Convergence studies in [3]
indicated orders of accuracy in £, of between 1.7 and 2.0 for
both linear and nonlinear flux functions. The advantages of
higher order solution techniques over first-order methods,
within a finite difference context, have been discussed by
many investigators; see, e.g., [16, 177. In these references it
was demonstrated that, for simulations of miscible dis-
placements, higher order methods used in conjunction with
appropriate physical dispersion models act to substantially
reduce grid orientation effects. These methods were further
shown to yield sharper solution fronts in simulations of
immiscible displacements. Because the advantages of higher
order solution techniques are clear from the results of
[3,16,17], we shall not present any results using a
first-order method here.

The first problem considered in this section is a verifica-
tiott of the basic method, a quarter five spot simulation of a
homogenecus reservoir, For this example, we take the
absolute permeability k to be constant and isotropic; ic.,
k=1 Porosity {¢) in this and all subsequent examples is
taken to be constant; its actual numerical value is irrelevant
as it serves only to nondimensionalize time. The system con-
sidered is essentially incompressible; ¢, = 1075 No gravity
effects enter this problem because the system considered is
horizontal. For this example, &,, =82, k,,=(1-S,)%
p.=0, and p,/u,=4 Initially, §,=0 throughout the
reservoir. Results are presented in terms of pore volumes
injected (PVI), which is analogous to dimensionless time.

The finite element grid for this example (Fig. 8) is
completely regular and contains 800 elements. Two flow
scenarios are considered for this exampie, as depicted in
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FIG. 8. Finite element grid and well arrangements for quarter five spot
simulations,

Fig 8. The first, referred to as the diagonal orientation, in
analogy to the finite difference terminology, has water injec-
tion in the lower left corner of the grid (indicated as [, in the
figure) and production in the upper right corner (£,), while
the second, referred to as the parallel orientation, has injec-
tion in the lower right corner (/,) and production in the
upper left corner (£,). Ideally, production results for these
two scenarios should be identical, as the mathematicai
problems are themseives identical. However, due to the dif-
ferent numerical dispersion characteristics of the two grid
orientations, simulation results will differ somewhat for the
two scenarios. The extent to which these two results differ 1s
a measure of the grid orientation effect of the method for
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FIG. 9. Qil recovery resulis for diagonal and parallel flow scenarios.
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FIG. 10, Cumulative oil recovery results for diagonal and parallel flow
SCEnarios.

this problem. Finite difference simulators typicaily display
little grid orientation effect for this problem [ 16, 171.
Results for oil recovery (normalized by total injection) as
a function of PVI are displayed in Fig. 9 for the two
scenarios. There is a discernibie but small difference between
results for the twoe scenarios in this example. This dis-
crepancy is comparable to that observed with higher order
finite difference methods. Shown in Fig. 10 are results for
cumulative oil recovery (i.e.. pore volume of 0il produced)
for the two scenarios. In this display, which is typically used,
the variation between the two methods appears to be
minimal. Figure 11 depicts a2 comparison of results for oil
recovery between the present method (diagonal orienta-
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FIG. U1, Comparison of oil recovery tesults for present method and

third-order ENO finite difference scheme,
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tion) and a third-order accurate ENO finite difference
scheme [17]. The ENO scheme used a 20 x 20 diagonal
grid. The two simulation results are in excellent agreement,
indicating the accuracy of the triangle based method.
Results for the cumulative oil recovery predicted by the two
methods are indistinguishabie and are not shown.

Having demonstrated the basic accuracy of the method,
we now turn to more demanding examples. The next case
considered involves an irregularly shaped reservoir in the
Western Overthrust Belt [ 18]. This particular reservoir was
deposited primarily via eolian (wind-blown sand dune)
processes, resulting in extensive crossbedding. This type of
depositional system is particularly interesting because it can
give rise (0 a very complex permeability field. Specifically, in
addition to exhibiting complicated heterogeneity patterns,
which are typically observed in reservoir rock, crossbedded
strata display generally anisotropic behavior; L.e., the local
permeability is a full tensor quantity (nonzero off-diagonal
components). This general anisotropy is due to the complex
layering of eolian strata, which is generally oriented at an
angle of between 0° and 30° relative to the horizontal of the
undeformed reservoir. The subsequent deformation of the
reservoir can even further complicate the permeability
description.

The finite element mesh for a vertical cross section of the
irregularly shaped reservoir is shown in Fig. 12. The per-
meability field used in this example is consistent with the
actual depositional system but was synthetically generated
unconditionally; i.e., not conditioned to any actual data. It
is thus representative rather than quantitatively descriptive
of the actual permeability field. The deposition is assumed
to have occurred prior to deformation, when the reservoir
was horizontal. The orientation (principal direction) of the
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— ‘2
by —
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) 0.2 0.4 0.6 0.8 1.0

FI1G. 12. Finite element mesh and well arrangements for irregularly
shaped reservoir.

263

1.0

0.8

0.6 Pgy P3
y P4

0.4- %

0.2 b

Iy —
0 T - T T
0 0.2 0.4 0.6 0.8 1.0

X

FIG. 13, Streamlnes for flow through reservoir of Fig. 12 with
heterogeneous and anisotropic permeability field.

local permeability tensor in the undeformed system is
assumed to be —20°, This orientation 1s consistent with the
“effective” or “averape” orientation of a representative por-
tion of an colian depositionai system, as computed in {157,
The ratio of the principal values of the effective permeability
tensor is taken to be 10 (with the larger component in the
principal direction oriented at —20°), again consistent with
reported data. The local permeability tensor for the actual
system (deformed) was obtained by rotating the per-
meability in the undeformed system through an angie
equal to the local dip of the reservoir. This yields a local
permeability tensor oriented at —20° relative to the local
inclination of the reservoir. A correlated heterogeneity field

1.0

0.8

FIG. 14. Streamlines for flow through reservoir of Fig 12 with
homeogeneous isotropic permeability field.
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FIG. 15. Water saturation contours for two phase flow through
reservoir of Fig. 12 with heterogeneous and anisotropic permeability field
with G, =10.

of specified correlation length and variance is then intro-
duced by scaling the permeability field above with a statisti-
cally isotropic scalar field of prescribed correiation length
and variance, generated as described in [19]. For this
example, the correlation length is taken to be 0.025 and the
variance of the log of the magnitude of k is unity. After this
scaling, the magnitude of the permeability varies by a factor
of over 500 throughout the reservoir and is in general dis-
continuous between adjacent elements, Thus the final per-
meability field is guite complex, as it displays a considerable
degree of heterogeneity and is generally anisotropic.

The locations of injection and production welis for this

1.0

FIG. 16, Water saturation contours for two phase flow through
reservoir of Fig. 12 with heterogeneous and anisotropic permeability field
with G,=6.67.
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FIG. 17. Oil recovery results for flow through reservoir of Fig, 12 with
heterogeneous and anisotropic permeability field.

example are as indicated in Fig. 12 (this is not the produc-
tion scenario of the actual reservoir). The two water injec-
tors inject equal amounts and the three producers similarly
produce equal amounts of total fluid. Because the system is
essentially incompressible, total injection and total produc-
tion are balanced. By varying the total injection rate, which
in turn varies the dimensionless group G, the importance
of gravitational effects (which act in the negative
y-direction) relative to convective eilects can be gauged. As
is apparent from Figs. 6 and 7, gravitational effects can be
quite significant and can act to increase the efficiency of the
displacement. For this example, we take the relative
permeabilities to be of the same form as above but set
o/, =10. We set p, =1 and p,=0.8. Again, p.=0 and
S, =0 mitially throughout the reservoir.

The initial streamlines resulting from the well arrange-
ment and permeability field described above are shown in
Fig. 13. This flow field can be contrasted with that resulting
from the same well arrangement with a homogeneous
isotropic permeability description (k=1), displayed in
Fig. 14. Substantial differences between the two flows are
apparent, indicating the general effects of the anisotropy
and heterogeneity of the permeability field. Saturation con-
tours (ranging from §,=0.1 to S, =09 in increments of
0.1) for the heterogeneous case at 0.23 PVI are shown in
Fig. 15. In this simulation, G,=0; i.e, no gravitational
effects are present. Water breakthrough at producer P, has
already occurred. Saturation contours at the same dimen-
sionless time for the case G, = 6.67 are shown in Fig. 16. The
effect of gravity is clearly apparent in this case; the displace-
ment is much more efficient than in the zero gravity case and
water has not broken through to any of the producing wells.
As discussed in Section 2.3, sonic points can occur when
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gravitational effects are present. For the case considered,
sonic points occur throughout the domain and at virtually
every time step. Using the consistent numerical flux
representation described in Section 2.3 for handling sonic
point contributions in heterogeneous systems, the method
encounters ne difficulties in handling gravitational effects;
i.e., no unphysical oscillations or spurious extrema develop.
The differences between the two simulation cases are further
illustrated in Fig. 17, where oil recovery as a function of PV1
is plotted. The solid curve corresponds to the G,=6.67
simulation and the dashed curve to the &,=0 case. The
earlier breakthrough of water in the zero gravity case clearly
feads to substantially reduced oil recovery.

The last example problem considered involves simulation
of two phase flow through a detailed section of an outcrop
of a crossbedded eolian system. The system is identical to
that of [157]; the finite element grid is shown in Fig. 18. As
discussed in [15], the shaded elements correspond to so-
called grainflow regions and the unshaded elements to wind
ripple regions. Permeability in the grainflow regions is
relatively high and isotropic; i.e, k=1 in these regions,
Wind nipple regions typically display lower, anisotropic
permeabilities. For these regions, we take the component of
permeability in the direction parallel to the local wind ripple
orientation (the local wind ripple orientation is estimated
from a photograph of the outcrop; it is approximately equal
to the orientation of the local grainflow strata) to be 0.3 and
the component in the perpendicular direction to be 0.03.

For this example, we assign the same physical properties
as in the example above. No gravitational effects are
included (G,=0), though capillary pressure effects are
included in this example. Capillary pressure is taken to be of
the form [20],

S,+e¢

=41 21
p.=4ln Trs" {21a)
where
(pc:)max
=t 21b
In(e/(1 +¢)) ( )
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FIG. 18. Finite ¢lement mesh and well arrangements for section of
eolian outcrop.
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FIG. 19. Water saturation contours for two phase flow through eolian
section {first low scenario).

where ¢ is a parameter set to 10~ and (p )max 15 the
maximum capillary pressure. The definition of the Peclet
number [Eq. (1h)] is now

fov L
Pe (Pc)max k{" (2IC)
where all quantitics are as defined previously and
Be=(P)max- In the simulation resuits below, the Peclet
number defined in Eq. (21¢) is set to 10.

Two flow scenarios are considered for this example, as
depicted in Fig. 18. Tn the first scenario, injection is in the
lower left corner (/,) and production is in the upper right
(P,); in the second injection is in the lower right (7,) and
production is in the upper left (P,). Saturation contours at
0.136 PVI for the first scenario are shown in Fig. 19. The
displacement is quite nonuniform and clearly follows the
direction of the high permeability grainflow regions and the
high permeability component of the wind ripple region.
Contours at the satne dimensionless time for the second
scenario are shown in Fig. 20, The displacement is more
uniform in this case than in the first case, with the contours
much less affected by the colian features. The differences
between the contours in Figs. 19 and 20 illustrate the effects
of complex strata in influencing displacement processes.
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FIG, 20. Water saturation contours for two phase flow through eolian
section {second flow scenaric).
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4, CONCLUSIONS AND POSSIBLE EXTENSIONS

The intent of this paper was to develop and apply an
accurate triangie based method for the simulation of
immiscible displacements in porous media. The general
method combines a mixed finite element method for solu-
tion of the parabolic pressure equation with a TVD-type
finite volume method for solution of the essentially hyper-
bolic saturation equation. As was shown in Section 2, the
finite volume scheme couples optimally with the mixed finite
element solution of the pressure equation, essentially
because the mixed finite element method yields second-
order accurate approximations for the fluxes through
element edges, and these are precisely what is required by
the finite volume method.

The applicability of the method for the modeling of
two phase flow through geologically complex regions
was demonstrated in Section 3. There it was seen that
heterogeneous, generally anisotropic permeabiiity fields can
be readily modeled with the triangle based method. The
effects of gravity, the importance of the permeability
specification, and the influence of complex strata on
immiscible displacement results were illustrated for several
example cases, '

Several extensions of the general method presented here
would be of considerable use. The approach could be
readily applied to the solution of first-contact-miscible dis-
placement problems. For such problems, the flux function is
linear and the more compressive limiter developed in [ 3]
would be preferable to the less compressive limiter applied
in this study. The methodology could also be extended to
three-phase, multicomponent systems. The higher order
solution of the coupled hyperbolic equations describing the
multicomponent system would best be accomplished
through diagonalization of the 3F/3S matrix, with each field
interpolated and limited separately. The implicit solution of
the saturation equation could be useful in some cases,
particularly for three-phase systems with phase behavior.
Higher order, fully implicit solution methods are currently
being studied within a finite difference context and could
eventually be applied to triangle based methods.
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